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Abstract-Supersonic flows cannot be calculated using the classical Reynolds analogy, which must be 
replaced with a more specific one. The ‘strong Reynolds analogy’, due to Young and Morkovin, fulfills 
this role approximately if the wall is quasi-adiabatic, but not if a significant heat flux is present. To 
overcome this situation, another more general representation is proposed. Based on results involving the 
role of large-scale movements present in the boundary layer, this schematic model draws a relationship 
between temperature and velocity turbulent intensities and mean flow characteristics, while also examining 

the role of compressibility in turbulent motion. 

1. INTRODUCTION 

1.1. Review of subject 

IN RECENT years, the study of the relationship between 
velocity and temperature has taken on great import- 
ance due to the influence of intense heating at the 
wall on the development of boundary layers. Such is 
the case, for example, for aircraft flying at supersonic 
speeds, where increasingly powerful jet engines pro- 
vide heat sources capable of affecting the dynamic 
properties of boundary layers. The heat source modi- 
fies the curvature of streamlines as well as the pressure 
distribution, thereby generating zones of compression 
and relaxation, which can affect flight stability. As 

suggested by Cebeci and Bradshaw (ref. Cl], p. 41), 
these flows will be referred to as ‘coupled flows’, 
characterized as compressible with variable density, 
while the term ‘uncoupled flows’ will be used to 
denote incompressible flows occurring at low speeds 
where density is almost constant and heat is only a 
passive contaminant. 

To calculate uncoupled flows, specialists in aero- 
dynamics use the well-known Reynolds analogy, 
hereafter referred to as the analogy of the first kind 
(or ‘premikre man&e’, cf. Gaviglio, in Favre et al. [2], 
Chap. V, par. 2.3) which stipulates that turbulence- 
induced transfers of momentum and heat occurring 
normal to the wall take place in the same manner 
(Brun et al. [3], Vol. 3, p. 197). This analogy relates 
heat convection results to friction, which is often 
easier to measure. Boundary layers in supersonic flow, 
however, are ‘coupled flows’, even in the absence of 
a heat source or sink at the wall. Turbulence dissipates 
energy through viscous friction within the flow itself, 
thereby explaimng the existence of mean enthalpy 
gradients. The analogy of the first kind can therefore 
no longer be applied in such a straightforward 
manner. Furthermore, directly measured temperature 
is equal to the local isentropic total temperature, 
complicating both experiments and equations. Calcu- 

lations therefore call upon approximate solutions, due 
to Young 143, consisting of complex equations, and 
reformulated relations discussed and applied by 
Morkovin [S] who designated them as the ‘strong 
Reynolds analogy’ (SRA), hereafter referred to as the 
analogy of the second kind (or ‘deuxitme manitre’, 

cf. ref. [2]). 
This paper examines the above analogies and 

highlights the difficulties encountered in their concept 

and use. It also suggests a way to avoid these problems 
by establishing a new schematic model that allows 
the effects of compressibility, and its probable causes, 
to be examined. 

1.2. Basic hypotheses and conditions of the study 
(a) The study has been limited to continuous, two- 

dimensional equilibrium boundary layer turbulent 
flows, at a moderate external Mach number of M, 6 5. 
Equations are written in the mass-weighted average 
form (cf. Favre et al. [Z], Chap. II) since this type of 
notation contains fewer terms than the Reynolds 
representation, and the physical meaning is clearer. 
Each instantaneous quantity W is separated into 
its mean value m and its fluctuation such that - 
W = m + W’, w= pi/p and w’ = - p’w’jp. Mean 
equations of continuity and state are 

apij ape 
x+-=0 

dY 
(1) 

p = RjiF. (2) 

For a moderate Mach number, and at any point P 
in the boundary layer (Fig. l), it is assumed in a first 
approximation (Sections l-3), that fluctuations of 
velocity q’ are primarily rotational (u’ N u:) while 
fluctuations of temperature T’ are primarily isobaric. 
This implies that pressure fluctuations are neglected. 
The fluctuating temperature field is therefore practi- 
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NOMENCLATURE 

speed of sound W instantaneous quantity separated 
specific heat of air at constant into its average and its fluctuation, 
pressure and constant volume, it+ W’ 
respectively x, y, z distances, cf. Fig. 1. 
derivative symbol, 
D/Dt = d,‘dt + I&?/&~) 
static enthalpy, c,T 

Greek symbols 

total enthalpy, c,7; 
Y (C&“) 
6 

directions in a reference frame 
conventional boundary layer 
thickness 

wave number, 2nn/ii F r.m.s. thickness 
length scales a* displacement thickness 
Mach number A finite difference 
frequency 0 momentum thickness 
pressure a coefficient of heat conductivity of 
molecular Prandtl number the gas 
turbulent Prandtl number IJ coefficient of static viscosity of the 
instantaneous velocity (modulus gas 
4”): II + v + w 
heat flux: at the wall, 

P gas density 

Qw = ~(~~/~Y)~ = ~(~~/~Y)~ 
PU momentum 

constant characteristic of perfect ; 
friction: at the wall, 2, = ~(~~/~y)~ 
mean energy dissipation through 

gases, cp - c, viscous friction. 
correlation coefficient between 
uf and T’, between T’ and u’, 
and between u’ and v’ 

Subscripts 

Reynolds number 
d dissipation 
e 

time 
external (outside the boundary 

gas temperature (of a particle) 
layer) 

gas temperature (of a particle) 
ir irrotational 

in the outer flow 
is isentropic 

isentropic total temperature 
n narrow band filtering, e.g. u:, T;, 

‘friction’ temperature: 
(R,r), 

T, (1 + Pri’3((y - 1)/2)M:f 
r in a relative movement 
S non-isentropic 

fluctuation tem~rature T t turbulent, e.g. (PrJ; or reiative to 

filtered in a narrow frequency total temperature, e.g. (‘I;) 

band W relative to the wall (y = 0) 

wall temperature w rotational. 

instantaneous components of 
velocity in the x-, y- and z- Superscripts 
directions respectively 
(cf. Fig. 1) I:I 

statistical average 
mass-weighted average 

fluctuation velocity u’ filtered in dimensionless quantity 
a narrow frequency band fluctuation. 

tally non-isentropic (T’ N T:). The fluctuations u’ and continuity and state for fluctuations are written as 
T’ are assumed to be convected by the mean flow 
velocity according to the simplified theory of ‘modes 
of turbulence’ [6] which categorizes fluctuations as 

!$?+a%, 
ax ay a2 (3) 

‘rotational’, ‘entropic’, and ‘sound’. Results from a 
large number of experiments substantiate this point p’ p‘ T 

of view [5,7,8]. In this case, linearized equations of 3=r+- T (4) 
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FIG. 1. Boundary layer. Sketch of the flow. Frame of 
reference. 1,,,,, instantaneous superlayers; I,, conventional 

mean boundary layer. 

where 

p’__T 
A.. 

P T 

(5) 

(6) 

These approximations become less reliable as the 
external Mach number M, increases. In a second 
approximation (Section 4) pressure fluctuations will 

be shown to play an explicit role. 
(b) It is assumed that for any value of y/S, the 

modulus 4 of the mean velocity vector differs only 
slightly from the ti component parallel to the wall, 
and from the particulate velocity ri. The velocity 
component, t?, or ii, is measured by means of pressure 
tubes or by laser Doppler velocimetry (LDV). The 
latter also provides the component V (N tj, deducible 
from equation (1) if the flow is truly two-dimensional) 
as well as fluctuations u’ and u’. The fluctuation u’ is 
also obtained using a ‘straight’ hot-wire probe, i.e. 
normal to the mean flow. A yawed wire probe inclined 
on the mean flow, or a probe formed by two crossed 
wires is used to measure ul, although accuracy of the 

latter is often mediocre. Lastly, a ‘straight’ hot- 
wire anemometer is used to characterize the total 

temperature field 7; = 7; + T,’ and the temperature 
field T = T+ T’ using the well-known fluctuation 
diagram method [6] that also provides standard 
deviations J(u”, and J( Ty as well as the correlation 
coefficient RUT. As for the thermal field, given the 
temperature range of 1OOK < F < lOOOK, it is as- 
sumed that specific heat values cp and c,, the dynamic 
viscosity coefficient, and thermal conductivity of the 
air remain practically constant. 

(c) Section 2 recalls the basic ideas of the first 
Reynolds analogy, and then those of the SRA. Certain 
difficulties in interpretation are pointed out, together 
with inherent limitations from an application view- 
point, namely in cases where there exists an intense heat 
flux at the wall. To overcome these shortcomings, 
Section 3 proposes another form of analogy that takes 

into account the effects of compressibility on the mean 

flow field. Effects of compressibility on the turbulent 
field are examined in Section 4. 

2. REYNOLDS ANALOGIES 

2.1. The Reynolds analogy of the first kind 
For any external Mach number M,, the mean mo- 

mentum and mean enthalpy equations are 

- c,pu’T’ + Q. (8a) 
-> 

For equilibrium incompressible flows, $i/ldx = 0, 
wherein density varies as a function of distance from 

the wall, turbulent exchanges of momentum and heat 
predominate over molecular exchanges outside the 
viscous sublayer. Since dissipation is negligible, the 
above equations may be simplified in the conventional 
manner (cf. ref. Cl], pp. 46-50) to 

If boundary conditions are analogous (i.e. if mean 
velocity and mean temperature have similar distribu- 
tions) and if the Prandtl number Pr = pc,/i re- 
mains close enough to 1, these equations give the 
solutions 

(9) 

(10) 

Equations (9) and (10) characterize an ‘exact analogy’, 
as pointed out by Cebeci and Bradshaw [l]. This 

analogy would therefore apply to an ideal, i.e. un- 
realistic, situation. The attenuated form 

J(T’z) Jc;;“, 
T,-T,= u, 

(11) 

derived from equations (9) and (10) appears less 
questionable, as it does not formulate such a strict 
relation between u’ and T’ as do the other equations. 
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This relation could only exist if the scattering induced 
by the u’ and w’ components were neglected, along 
with the effects of pressure fluctuations. 

2.2. The analogy of the second kind or strong 
Reynolds analogy (SRA) 

2.2.1. Equations. 
(a) For supersonic flows equation (7a) holds, but 

since dissipation plays a major role, equation (8a) 
cannot be simplified. In order to obtain new formal 
solutions, it is possible to use the equation represent- 
ing the evolution ok mean total enthalpy. Instan- 
taneous total enthalpy is defined by 

H=c,T,=h+;=c,Tf$ (12) 

This equation can be rearranged and simplified as 
follows (cf. ref. Cl], p. 49): 

t7+H’=c,~+c,T; 

H’ N c,T’ + iiu’ = c,T;. (15) 

The equation that governs this relation is obtained 
by adding the equations for mean enthalpy !i = cPF, 
mean kinetic energy, and turbulent kinetic energy, 
which gives 

- (16) 

This equation no longer contains the dissipation term, 
nor any pressure term. Young [4] has established a 
comparison between equations (7a) and (16) in which 
he assumes that molecular effects are negligible, while 
at the same time Pr = 1. He considers several different 
situations. 

First case: the wall is heated or cooled and no 
pressure gradients are present. QW # 0; a@/& = 0. 

In this case the equations have the same form 
and boundary conditions are analogous: at the wall 
7; - 8, = 0, li = 0; at the free boundary 7; - T, = 
‘&, - T,, ii = u,. For these formal reasons, the author 
admits the double solution 

c,T; - T, = kti? (1W 

c,T; = k,u’ (1W 

where k, is a constant deduced from conditions at 
the wall 

Morkovin [5] specifies k, in the form k, = Pr,,.(Q&J, 

Second case: the wall is adiabatic and no pressure 
gradients are present. QW = 0; @/ax = 0. 

In this case k, is nil and the double solution is 

F = T, zz C’e (18a) 
T=Oo 

i T; = 0 = T’ + ;u’. (1W 

Morkovin writes relations (18a) and (18b) in the form 

equal to 

J(F) = o (19) 

J(P) = $;;I) (20) 

JPW 

(Y - l)M2(J(;;;z)P) z 1 
(21) 

-R,, = 1. (22) 

Third case: the wall is adiabatic and the pressure 
gradient is different than zero. QW = 0; @/ax Z 0. 

Solutions (18a) and (18b) satisfy equation (16) 
considered independently; they may therefore be 
applied for any value of @/ax. Solutions (17)-(22) are 
referred to as ‘SRA relations’. 

(b) As for solutions (9) and (lo), and for the same 
reasons, these relations describe an ‘exact’ analogy, 
i.e. one that may be applied to an ideal boundary 
case, which most likely explains why this analogy has 
been qualified as ‘strong’. 

(c) In the case of a weak heat flux at the wall, 
solution (17b) may serve as a basis for establishing 
solutions such as (18)-(22). Cebeci and Smith (ref. [9], 
p. 71) obtain one of these solutions by postulating 
that the Crocco relation between ii, T and 7; is valid. 
These authors’ results give 

(23) 

It is possible to verify that the theoretical and numer- 
ical results are close to those given in equation (23) 
by using semi-empirical equations relating Q, to TV, 
such as those provided in ref. [lo], Vol. 2, pp. 128- 
130. This is true because the equations given above, 
as well as the Crocco relation, are all valid in equi- 
librium flows. Equation (23) will hereafter be referred 
to as the ‘extended SRA solution’. 

2.2.2. E~~er~rnent~~ testing of the SRA relations. 
Figure 2 shows an example (partly shown in Dussauge 
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FIG. 2. Test of the strong Reynolds analogy relations. 

[ll]) from experimental testing of relations of the 
analogy of the second kind for an equilibrium boun- 
dary layer at supersonic speeds on a non-heated? 
(quasi-adiabatic) wall. Equation (21) is valid for the 
non-intermittent zone 0.05 < y/6 < 0.7, but the same 
is not true for equation (22) since (- RuT) differs from 
1 by about 15-25%. In ref. [7], slightly greater 
deviations were found for other Mach numbers. These 
observations merit several remarks. 

(a) The reasons for the above-mentioned differences 
are the same as those indicated in par. 2.1. In addition, 
Young (1986, private communication) points out that 
the term in (Pr - l), neglected in equation (16), 
represents a measurement of the dissimilarity of the 
two different modes of transfer for vector pu and 
scalar ?; which do not respond in the same manner 
to changes in density and pressure: this could ex- 
plain part of the deviation existing between -RUT 
and unity, namely for low Reynolds numbers. 

(b) For various flows, including the boundary layer, 
Gaviglio et al. (ref. [12], p. S187) have verified that 
equation (20) or equation (21) apply even when 
~~Jsjax # 0, in conformity with the analysis of the third 
case described in par. 2.2.1. 

(c) None of the experiments confirmed the ap- 
proximate equation (19), J(y) = 0 (cf. Kistler [7]). 
Morkovin [S] regarded this as the missing key that 
would explain the SRA. Paradoxically, however, the 
hypothesis Ti = 0 has been attributed to this author 
(cf. refs. [13,17]). We recall that J(T!?) must be 
compared with J(p), or with (c/c,)J(p) according 

t Since a heat flux exists in the absence of a heat source 
applied at the wall, the wall is not, strictly speaking, 
‘adiabatic’. 

to equation (15) and that the ratio J(F)/,,/(F) is 
most often only slightly less than 1. How then can 
equation (20) be compatible with J(TT) # O? In 
attempting to explain this, Deb&e [14] writes equa- 
tion (18b) in the form of a double implication 

f fJ(F)/F) = (y - l)~‘(~/(~)/~) (24) 

T;=Oe- 
-RUT = 1 (25) 

and demonstrates that, provided the SRA relation 
(24) is verified 

R,,=(T;2,‘T’2)-lf-1 (26) 

then follows. In separate works (refs. [15,16]) Gaviglio 
observes that, in a more general manner, when the 
rule of addition for two random variables is applied 
to equation (15) defining T;, the result is written 

This relation is confirmed (Figs. 3(a) and (b)) for 
a triangle MOP whose sides are equal to 

?f; = .,/(*)/,/(p), ? = 1 and _ 

li’ = (y - ,,h42* 

and whose opposite angles have a cosine of -RUT, 

-RT,,, and RT,T5 respectively. Condition (19) therefore 
appears sufficient but not necessary in order to satisfy 
equations (20)-(22). For example, the relation 
,/(F) = 0 would be confirmed for an ideal sound 
wave field, but not for a rotational, non-isentropic 
field (cf. Section 4). 

Examination of Fig. 3(b) reveals that this construc- 
tion applies to heated flows, even at low speeds, 
and that it illustrates the distinction, often poorly 
discerned, to be made between 7,’ and ?’ which have 
similar standard deviations, but are different due to 
the influence of li’. Since it is purely local, this con- 
struction also applies to the study of signals filtered 
in a common frequency band. 

2.3. The need for new models of the velocity- 
temperature relationship 

It has been shown (par. 2.1) how, within the boun- 
dary layer, the existence of high dissipation due to 
viscosity precludes the simple establishment of a 
theoretical and (too) strict analogy between enthalpy 
and velocity fluctuations, and how this problem led 
Young and Morkovin to formulate the SRA which, 
paradoxically, is expressed by relations that are just 
as strict between u’ and T’. To avoid this shortcoming, 

“NT 30:5-G 
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_b_ 

FIG. 3. Graphic representation of velocity and temperature fluctuations. (a)Supersonic boundary layer 
on a quasi-adiabatic wall. (b) Subsonic boundary layer on a heated wall. 

an attempt has been made [13,17] to demonstrate 
how these relationships can stem from known physical 
mechanisms of turbulent transfer and diffusion, at the 
same time avoiding reference to any models that are 
valid for perfect fluids, as these are incompatible with 
the rotational nature of the turbulent field. 

Following the conclusions of Morkovin [S], the 
next part of this presentation assumes that these 
mechanisms, related to the properties of turbulence, 
are hardly influenced by compressibility which, 
although displayed in the mean motion, presents 
no substantial source of vorticity. Only in further 
reflections will the study examine the effects of com- 
pressibility in fluctuating motion which, moreover, 
will be explained once again by the mechanism 
recalled above. 

Under no circumstances is the physical study of 
phenomena represented in the form of a model for 
flow calculation, as the purpose here is only to 
facilitate the introduction of these physical hypotheses 
into existing models. 

3. SCHEMATIC MODEL BASED ON THE 

HYPOTHESIS OF AN ISOBARIC TURBULENT 

FIELD 

3.1. Large-scale movements in the boundary layer 
Werle’s films [18] show that in free turbulent 

flows, and also in wall turbulent flows, large-scale 
movements occur in a plane normal to the mean flow, 
and in this case normal to the wall. These phenomena 
appear to be related to the ‘bursting’ phenomenon 
that seems to affect the boundary layer regardless of 
its Mach number. Filmed in the early 1950s by Weske 
and Theodorsen, cited by Head and Bandyopadihay 
[19], this phenomenon has since been visualized, 
photographed, and analyzed by several authors such 
as Kline et al. [20], Kim et al. [21], Antonia [22], 
Chen and Blackwelder [23], and Cantwell [24] for 
low-speed flows; and by Zakkay et al. [25], Owen 
and Horstman [26], Deckker and Weekes [27], and 
Deckker [28] for compressible flows. The bursting 
phenomenon has not been examined in the present 
study, but has simply been recalled to assist in pro- 

r 

FIG. 4. Organized structures: E, burst; DC, AC, decelerated, 
accelerated flow; I,, conventional mean boundary limit of 
the layer; L,, particle emission path outside the turbulent 
region; I,,, L,, particle emission path inside the turbulent 

region. 

viding a schematic view of boundary layer properties 
(cf. par. 3.2 and Section 4), hence only a few char- 
acteristics have been mentioned herein. 

Large-scale movements are related to the presence 
of longitudinal eddies (streaks) produced randomly 
near the wall. Multitudes of concentrated eddies are 

ejected in loop, horseshoe, and hairpin shapes of 
various length, depending on the Reynolds number, 

and inclined on the wall to about 45”. These eddies 
burst in the inner region (y/6 5 0.15) and sometimes in 

the outer region (y/6 5 0.4), causing small-scale turbu- 
lence in the bursting process. This phenomenon is 

then followed by a fluid sweep with greater velocity 
and lower temperature than the bursts, and originat- 
ing from the region near the outer boundary. These 
structures, illustrated in Fig. 4, alter the regularity of 

both the paths of emission and the isochronous lines 
used to visualize them [19]. Their motion, showing 
strong three-dimensionality, could be related to that 
of the superlayer. The production of turbulence, of 
friction within the boundary layer, etc. depends to a 
great extent on these movements. 

An example drawn from visual examinations con- 
ducted at the I.M.S.T. by Da’ien [29] is provided in 
Fig. 4. Taken at a low Reynolds number (BR6 = 4900), 
this representation shows an eddy in upward motion 
moving towards the outer region before it bursts. 

As the properties recalled here seem to be relatively 
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independent of the Mach number, it appears possible 
to use them as a basis for a general schematic 
representation (see ref. [26]). 

3.2. Schematic model 
(a) The above considerations lead to a distinction, 

albeit arbitrary, between large- and small-scale com- 
ponents of velocity and temperature. Only large-scale 
movements will be taken into consideration in the 
present. Large-scale structures remain coherent over 
a length Ly determined on the basis of space-time 
correlation measurements made at points P(y) and 
P’(y) on the same Y-axis normal to the wall. L, is 
written as 

i 

m 

L, = U'(Y, W(Y’, tl 
yf = 0 &TY, C))\lGTY'> tNdY’. 

They may be reasonably estimated from measure- 
ments published by Favre et al. [30]. Near the wall 
L&6 appears to have a value of approximately 0.2 
and increases as Y increases, reaching 0.4 at the free 
boundary. 

Large-scale movements may be described by the 
‘flutter’ diagram proposed by Burnage (cf. Burnage 
and Gaviglio [31]) for a supersonic laminar flow 
oscillating transversely in a random manner. The 
mean velocity and temperature profiles oscillate as a 
single block ahead of the probe set up at P (cf. Fig. 
1). This probe acquires signals ui and T: ‘induced’ in 
the instantaneous relative displacement 

u: = ay 

a”,, i?T 
, T;=;i;;yt. (28a) 

Phase opposition occurs between ui and T: since 
the mean gradients are of opposite signs: the corre- 
lation coefficient -RUT is therefore equal to 1. The 
standard deviation for fluctuation y’ is written as 

The formulation proposed here requires at least that 
,/(F) be less than coherent length L, in order to be 
confirmed. Scales that are characteristic of the overall 
signal are defined as 

This assumes that the ratio 1,/l,, is equal to 1, which 
is in fact the case if small-scale fluctuations, not taken 
into account by signals ui and Ti, alter these signals 
in approximately equal proportions. As concerns the 
correlation coefficient -RUT, in the case of low-speed 
flows. these fluctuations reduce its value. In Section 

I ------ 

! 

/ I 

0 
0 0,s Y/b l,O 

FIG. 5. Characteristic lengths of temperature and velocity 
fluctuations across the boundary layer. Quasi-adiabatic wall, 

M, = 2.32. 

!L 1 1 

OL 1,o 
FIG. 6. Ratio of characteristic lengths of temperature and 
velocity fluctuations across the boundary layer: 0, ref. [32]; 

&,,ref. [33]; 0, ref. [34]. 

4 it will be shown that compressible flows provide 
quite different results. The premises of the present 
formulation, expressed by equations (29) and (30) are 
therefore akin to those of Prandtl’s mixing length 
representation applied to both velocity and thermal 
fields. 

(b) Predictions of this representation are reasonably 
confirmed by experimental results. Figure 5 concerns 
a supersonic boundary layer on a quasi-adiabatic 
wall. The conditions are the same as for Fig. 7. Figure 
5 shows that for any value of y/S, 1,/6 and l&5 have 
neighbouring values more than two times lower than 
L,/6. Figure 6 pertains to three very different flows: 
a supersonic flow on a quasi-adiabatic wall (Debieve 
[32], as above); a hypersonic flow on a cooled wall 
(Laderman and Demetriades [33], same conditions 
as Fig. 8); and a supersonic flow on a slightly heated 
wall (Fulachier [34]). In each case, the ratio IT/l, is 
practically constant within Ifr 10 to 15%) for any value 
of y/6, excluding the viscous sublayer. Deviations are 
no greater than measurement errors, which does not 
imply, however, that they may be explained by the 
latter. 

It should also be pointed out that the basis of the 
new schematic model conforms to the rules recalled 
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by Launder and Spalding (ref. [35], readings 2 and 
3) that must be observed if the mixing length hypo- 
thesis is to express correctly the turbulent transfer of 
scalar or vector quantities. 

(c) The schematic representation. consists of writing 
equations relating T’ to u’, based on equations (29) 
and (30) 

or 

(32) 

or 

Jvv 
(y - l)WJ(;Tz)/ii 

z l-E&’ 
( > 

(33) 

equation (33) being deduced from equations (32) and 

(14). 
If it is assumed that ?;ly/6) is strictly invariant, 

equation (33) wouid coincide with equation (21), 
which would not be the case even if the wall were 
adiabatic. Neither would this apply in the case of a 
non-heated wall which, by means of conductivity in 
the wall supports, maintains a temperature 7” slightly 
greater than the ‘friction’ temperature Tf < T,, (cf. 
nomenclature). Therefore, the term (1 - a’l;/13T)- ’ is 
not equal to 1, but does approach this value. In 
general it may take on large values. It should be noted 
that the length of segment OP = ii’ in Fig. 5 is equal 
to (1 - aZ/aQ. 

Remark. The present analogy does not assign a 
value to the correlation coeflicient (- R,,), but it does 
express that it cannot be equal to 1. 

3.3. Conjkontation between analogies and experiment 
3.3.1. Supersonic jfow. 
(a) Case of the quasi-adiabatic wall. 
Figure 7 illustrates the case of a boundary layer 

developing on a nozzle wall (cf. ref. [32]). Conditions 
are as follows: 

(@/slax) = 0, M, = 2.32 

I;. = 293 K, T, = 284.6 K, Tf = 278 K 

6 ass = 9.6mm, B = 0.73 mm, 9, = 5650mm-‘. 

The free conventiona boundary is the same for the 
velocity and temperature fields. Satisfactory agree- 
ment is found between the present analogy and 
experiment, especially for the inner region. Results 
coincide fairly well with equation (21) and even more 
so with equation (23), the so-called ‘extended SRA 
solution’ (cf. par. 2.2.1) which takes into account a 
residual heat flux. 

(b) Case of the heated wall. 
In the absence of boundary layer behaviour on a 

wall heated to high temperatures, the present analogy, 

1.0 

I I I 

0 0.5 1.0 Y/6 
FIG. 7. Comparison of results (adiabatic wall, M, = 2.3): 
0, experiment; -, present analogy; - - -, ‘extended SRA 

solution’. 

equation (33), has been applied to average profiles 
of velocity and temperature, not far from internal 
equilibrium, but calculatedt using a mixing length 
method. The conditions are the same as those for the 
preceding figure, but three wall temperatures have 
been considered 

T, = 280 K (TJT,) = 1 

(the results practically coincide with those of Fig. 7) 

T, = 420K (TJT,) = 1.5 

T, = 560K (TWIT,) = 2. 

Results are shown on Fig. 9, along with those of Fig. 
8 discussed below. The extended SRA solution applied 
to cases of heated flow does not provide satisfactory 
resuits here, due to the high temperatures imposed at 
the wall; it therefore has not been presented in the 
figure. Discussion of Fig, 9 is presented in par. 3.3.3. 

3.3.2. Hypersonic pow on cooled wall. For the case 
shown in Fig. 8, flow characteristics (cf. ref. (331) are 
the following: 

(+/ax) = 0, M, = 9.37 

7;, = 192K, T,=304K, T,=758K 

6 995 = 6.1 in. @ = 0.29 in. W, = 12,70Omm-‘. 
(15.49 cm), (0.72 cm), 

This figure also illustrates the comparison between 
the values of the first member of equation (33), drawn 
from the experiment, and those of the second member 
which represent the proposed analogy, as a function 
of thickness 8 = 4.05 in. (1Ocm) defined by the authors 
on the basis of the standard deviations of the turbulent 
fluctuations (‘r.m.s. thickness’). Two sets of measure- 
ments are presented, obtained using two different hot- 

t By the O.N.E.R.A. centre C.E.R. in Toulouse; results 
kindly provided by Mr Leuchter of the Aerodynamics 
Division. 
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F/i 
(Y-l)M’(~/G) 

0 0.5 113 1.5 y. 

FIG. 8. Comparison of results (cooled wall, M, = 9.4): 
0, l ,experiment (two different wires); ---,present anal- 

ogy; - - -,extended SRA solution. 

wire probes. The differences between the two sets are 
noticeable, but normal, given the difficulties encoun- 
tered in studying hypersonic flows. These problems 
involve both experimental conditions, namely cali- 
bration of the probes, and methodology, especially 
in interpreting measurement results, which is comp- 

licated by the existence of a high level of pres- 
sure fluctuations at the wall (cf. original works by 
Kovasznay [6] and Morkovin [36]; the analysis 
made by Bradshaw [37]; and the paper by Laderman 
and Demetriades). For both sets of measurements, 
the ratio 

J(T’2)lF 

(Y - I)M’(J(~)lr) 

approaches 1 when (y/6) + 0, and decreases as the 
distance from the wall increases. The present analysis 
is in rather good agreement with one set of measure- 
ments, namely as concerns (y/6) < 3/4. The extended 
SRA solution, however, applies poorly in the case of 
the cooled wall, because it is not adapted to the case 
of a strong temperature heat flux at the wall. 

3.3.3. Summary of results provided by application of 
the present representation to supersonic flows. Figure 
9 summarizes the above results, indicating in a quah- 
tative manner how the ratio 

J(F)/T 

(Y - w2( J(W-4 

represented by (1 - a’i;/aT)- ’ = 0 evolves through 
the boundary layer vs temperature gradients imposed 
at the wall. The difference to one were highly negative 
for TWIT, = 0.43; practically nil for T,,./T, = 1.02; and 
highly positive for T,/T, = 1.5 and 2. Referring to Fig. 
3, it may be observed that the more the wall is heated, 
the more point P approaches point 0. Figure 3(b) 
could represent the case of a supersonic flow with a 
strong temperature heat flux. 

lkT_- 
0 .5 1.0 Y/f 

919 

FIG. 9. Distributions through the boundary layer of the 
ratio of temperature and velocity fluctuation levels. Influence 

of the wall temperature. 

3.3.4. Application of the present analysis in low- 
speed jlow on a slightly heated wall. The experiments 
conducted by Fulachier [34] were carried out on a 
flat plate with a dynamic leading edge. A low heat 

source was imposed a short distance ahead of this 
edge, and conditions were as follows: 

(@/ax) = 0, M, = 0.035 

T,=293K, T,=315K 

6 = 62mm, 0 = 5.98mm, %!‘, = 840mm-‘. 

At subsonic speeds the present analogy was applied 
in the form 

as well as in the ‘attenuated form’ of the so-called 
‘exact analogy’ 

J(T'2) u, ---1. 
J(F) L - T, 

Comparisons with the experiment are given in 
Fig. 10. Equation (34) is confirmed correctly for the 
mean plot within f 12% for any value of y/6. The 
same is true for equation (35) where y/6 < 0.5, but at 
greater distances the deviations are substantial. This 
seems to be explained by the slight difference existing 
between the origin of the dynamic field and that of 
the thermal field. 

3.4. Comments on applications of the present analogy 
3.4.1. The proposed schematic model cannot be 

applied to T; in the same manner as it is applied to 
T’ and u’. If this were possible, one could define a 
distance IT, such that J(p) = l,(L@,/ay); this cannot 
be done because of the non-linear form of equation 
(27). Moreover, there is no similarity between the 
total enthalpy and velocity profiles, as demonstrated 
by the results of Kistler [7], Debieve [32] and others. 
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05. 

> 
0 0.5 1 r/a 

FIG. 10. Comparison of results: -‘-., theoretical value, 
1; -, present analogy, equation (31); - - -, conventional 

analogy, equation (11). 

3.4.2. The present analogy can be used to character- 
ize the evolution of the entropy mode between two 
known states of the boundary layer, 1 and 2, corres- 
ponding, respectively, to a quasi-adiabatic wall 
(TJT, N 1) and a heated or cooled wall (T’JT, = 2 in 
the example below). This can be achieved by finding 
the mean temperature distributions in each case, 
either through experimentation or calculation, and 
applying equation (33) to states 1 and 2. To simplify, 
it is admitted that the Reynolds number is fairly high. 
Under these conditions, an addition of heat, modifies 
6 and M (e.g. from 10 to 15%) but does not change 
velocity turbulent intensity significantly. This leads to 

(Jmm M; [l - (a7;/aT)], 

(JVW), = M: Cl - @T/m1*’ 

Based on the experiments described in ref. [32] and 
the calculation of the same mean flow heated to high 
temperatures (T,/T, = 2, cf. par. 3.3.1.b and Fig. 9), 
results corresponding to a distance from the wall 
y/6 = 0.1, J(p)/ii = 0.1 and (J(‘p”,/nl = 0.055, are 
as follows: 

It appears clearly that heating the wall strongly 
increases the heat turbulence level. 

3.4.3. The gradient-based representation associated 
with the geometric diagram presented in Fig. 3 is of 
interest as it may also contribute to simplify certain 
measurements. Experimentation may be formulated 
on the basis of quantities measured using complemen- 
tary means and methods such as pressure probes, 
hot-wire anemometry and laser Doppler velocimetry. 
As an example, 7; and J( TT) may be obtained using 
a constant-temperature hot-wire anemometer; G and 

J(p) may be obtained through laser Doppler veloc- 
imetry (cf. El&a et al. [38]). The three sides of the 
triangle are therefore defined as 

MO=T’=l 
/ 35\- ’ 

0,&(,_$2) 

where 7 is deduced from equation (14) 

where J(T’2) is taken from equation (33). 

Results must be interpreted with caution, as measure- 
ment accuracy is different for each type of apparatus 

and method used. 
3.4.4. Lastly, it is recalled that the application of 

the proposed schematic model (cf. ref. [13], par. 
3.5) provides the following relationship between the 

turbulent Prandtl number and coefficients of corre- 
lation: 

This is satisfactorily confirmed through experimen- 
tation in the case of low-speed equilibrium boundary 

layers. 

4. EFFECTS OF COMPRESSIBILITY 

4.1. Review 
(a) The preceding study confirms Morkovin’s idea 

[S] that in an equilibrium boundary layer, the mech- 

anisms of turbulence production, diffusion and dissi- 
pation do not depend primarily on compressibility, 
although this phenomenon does have an influence on 
the mean temperature distribution. One interpretation 
[26] of results from measurements conducted at a 
fairly high Mach number (M, = 7.2) confirmed that 
the structure of the boundary layer is such that 
“. . . turbulent production . . . is consistent with previ- 
ous results obtained in incompressible flow”. This 
idea has made it possible to establish a model of 
the velocity-temperature relationship (par. 3.2) in the 
presence or absence of heat at the wall. It is nonetheless 
important to point out that results could be very 
different for flows strongly out of equilibrium, as 
for interactions between turbulence and shock or 
relaxation waves (cf. refs. [ll, 12, 16, 32, 393). The 
present is an attempt to specify how compressibility 
acts on the relationship between fluctuations of velo- 
city, temperature, and pressure. This requires a brief 
review of certain principles. 

(b) In addition to isobaric fluctuations of velocity 
41. and temperature Tii, respectively characterized as 
rotational and isentropic and transported by the flow 
[8], there exist [6] pressure fluctuations p’ which are 
propagated by waves that cross the streamlines. In 
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/ 

FIG. 11. Mach wave: isentropic wave front, and irrotational 
velocity fluctuations. 

a wave model, the fluctuation p’ is associated with 
irrotational velocity fluctuations &, and isentropic 
temperature fluctuations T,; the latter can exist even 
in situations where a wave model does not hold. One 
can write the following (Finzi and Pastori [40]): 

q’ = 41, + 4, (36) 

(omitting ‘induced’ velocity for simplification); and 

T’ = T; -I- T;,. (37) 

Applying the law of plane waves gives 

P 
, -’ 

= Paqic (38) 

and the law of isentropy 

TiL Y-lP’ 
T=rP’ 

Density fluctuations are separated into two terms 
such that p’ = pi + pi’,, where pi obeys law (4) and 
pii law (39) (cf. Gaviglio [41]). Within the boundary 
layer, the level of pressure fluctuations increases 
rapidly as the external Mach number rises. Outside 
the superlayer, fluctuations qii, Tii and pii predom- 
inate, corresponding to radiated sound waves. Based 
on a theory put forward by Phillips (1960), Laufer 
[42] showed that these waves seem to be generated 
by ‘sources’ transported at a velocity us, close to 
C(y/6), that are supersonic with respect to the outer 
flow: u, - u, 2 a,. At a large distance from the wall, 
these sources are inclined at an angle 

/I = arcsin 
1 

If u, = ri (assumed in this case for the sake of simplicity) 
these would be ‘Mach waves’. According to equations 
(38) and (39), p’, Tii and qi~ provide a correlation of 
1. Figure 11 shows schematically that a hot-wire 
probe perpendicular to the figure plane is influenced, 
not by velocity 4,; normal to the wave plane, but by 
its component uii of qii. This results in 

R,=R,,=l butR,= -1. 

I.. .’ I..’ .‘1 
-‘\ 

0 01 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1 y, 

FIG. 12. Distributions, through the boundary layer, ofcorre- 
lation coefficient -R,, for compressible and incompressible 

flows. 

4.2. Experimental presumptive evidence of 
compressibility effects 

Compressibility effects may be recognized by com- 

paring results obtained in supersonic flow with others 
provided at low speed. The moderate differences 
observed in the standard deviations of u’ and T’, 
when appropriately represented in a dimensionless 

form [7], are not commonly attributed to these effects: 
this hypothesis is admitted in the present paper in 
order to establish an approximation. More significant 

differences are displayed by distributions of the corre- 
lation coefficient -RUT, which is to date the only 
correlation to be measured with any reasonable 
amount of accuracy. These differences cannot be 

explained by measurement errors. 

4.2.1. Evolution of the velocity-temperature corre- 
lation coeficient across the boundary layer. Figure 12 
represents the evolution of -R,, across the boundary 
layer in various experiments. At supersonic speeds 

(curves 1 [43] and 2 [16], M, = 2.3; curve 3 [ll], 
M, = 1.77) this coefficient is close to -0.8 and in- 

creases as y/6 rises. At large distances, the measure- 
ments of radiated ‘noise’ [42] indicate that it ap- 
proaches 1. At low speeds, however (curves 4 [44] 
and 5 [34]), -R,, decreases steadily as y/6 increases. 

4.2.2. Evolution of the velocity-temperature corre- 
lation coefJicient as a function of wave number. 
Figure 13 represents the evolution of (- RUT)” related 
to signals filtered in a narrow frequency band, as a 
function of wave number k,B per momentum thick- 
ness, for various Mach numbers M,. At low speeds, 
(-RUT)” declines regularly as k10 increases, which 
corresponds to a ‘loss of memory during the cascade 
process’ from the largest structures to the smallest (cf. 
Bestion [39]). At supersonic speeds it declines less 
rapidly, and increases for the highest external Mach 
number. This type of evolution cannot be attributed 
to the fact that the distances from the wall y/6, and 
therefore the Mach number and the turbulence level, 
are not exactly the same, since the experiment shows 
that the results depend only slightly on these parame- 
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FIG. 13. Distributions of correlation coefficient -RUT vs wave number k,O. Influence of the external Mach 
number 

ters (cf. ref. [32], Fig. 34; ref. [39], Figs. 70 and 72). 
This is also true for the ratio 

[ 

J(T’Z)IT 
(y - l)M2J(P)/G 1 ” 

that expresses the relative levels of the fluctuations u’ 
and T’. Consequently, it may be assumed that the 
evolution is an effect of the external Mach number. 

4.3. Physical interpretation of experimental results 
In view of the above results, it appears necessary 

to assess the possible causes that could explain how 
compressibility is responsible for maintaining the 

high values of the velocity-temperature correlation 
coefficient. Two reasons seem to be related to proper- 
ties of the coherent large-scale structures, and another 
to the internal intermittency of turbulence. 

4.3.1. Role of large-scale, quasi-organized structures. 
Even before the existence of large-scale structures 
within compressible boundary layers was recognized 
(cf. par. 3.1), their presence was suspected and postu- 
lated in attempting to explain the sound radiation of 
these layers. From a Schlieren picture taken by James 
(1958), Laufer [45] inferred that these waves were 
due to short-lifetime ‘sources’. Ffowcs Williams and 
Maidenik (ref. [46], p. 643) consider them as ..a 
form of balistic shock waves “attached to coherent 
regions of turbulence, or eddies, convected super- 
sonically.. .” with respect to the outer flow. Since 
then, this presence within high-speed layers has been 
demonstrated by measurements [25,26]; by visual 
observations in a shock tube [27,28]; and by analysis 
of these documents [19]. For Deckker (private com- 
munication) these are regions with a high-density 
gradient since they appear clearly in Schlieren pic- 
tures. They are therefore inhomogeneous entities of 
strong vorticity, where mean velocity is less than in 
the ambient environment, and temperature higher. It 
is likely that, as at low speeds, they deform isochron- 

r.w,/ 

FIG. 14. Compression (camp.) and expansion (exp.) waves 
around a large structure, resulting in radiated Mach waves 

(r.w.), 1,, L, to L,, as for Fig. 4. 

ous and emission paths [20,29], which at supersonic 
speed would bring about the formation of zones of 
compression with shock on the back of the structures, 
and low gradient zones of relaxation on the front 
(Fig. 14). If this hypothesist is correct, mean total 
temperature is practically constant: a hot-wire probe 
located alternately in an accelerated zone AC, and 
then in a decelerated zone DC (Fig. 4) records devia- 
tions of mean temperature and velocity of opposite 
sign such that, as per equation (14): AT = -(G/c,)Aii, 
resulting in a correlation of - 1. Application of the 
‘flutter’ diagram, equations (28)-(30) leads to the 
same result. The deviations mentioned above occupy 
a very wide frequency band, due to the fact that a 
wide dispersion exists in the production time of bursts 
and in the intervals separating them [20], and also 
due to the abrupt nature of the compression zones. 

t As is stated in ref. 1461: “. due to the convective motion 
of the coherent regions of turbulence.. .it is only to be 
expected that eddies moving supersonically should create 
rudimentary shock waves”. 
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These deviations are superimposed on turbulent fluc- 
tuations u, and Ti and on fluctuations uii and Ti, 
whose properties were described in par. 4.1.b. Outside 
of the boundary layer, the radiated waves are emitted 
by ‘sources’ that are sufficiently close to the wall for 
their speed to be supersonic with respect to the outer 
flow. 

This schematic model accounts for the fact that at 
supersonic speed, the correlation coefbcient -R,, is 
sustained at high values throughout the boundary 
layer (Fig. 12) and approaches 1 at relatively large 
distances from the wall y/6 where measurements 
involve only acoustic waves. This implies that, due to 
compressibility, Au’ and A? replace the signals for 
which a loss of memory occurred in the cascade 
process. Actually, a physical model of this type can 
only provide a quite simplified picture of reality. 
Moreover, it would be false to believe that it is the 
only representation possible. Great caution is required 
in this domain: Ffowcs Williams [47] demonstrated 
that it is permissible to admit several solutions to the 
problem of localizing the noise sources and explaining 
their intensity. It is perhaps possible to avoid a 
questionable picture by accepting the assertion of 
Rayleigh [48] who states that “a region of altered 
compressibility acts like a simple source, a region of 
altered density like a double source”. 

4.3.2. Eflect of juctuations at scales of dissipation, 
Heat production within the high-speed turbulent 
boundary layer may be represented schematically as 
‘spots of entropy’, borne from the intermittency of the 
locally high rate of fluid deformation inherent to 
small-scale turbulence. This deformation rate is in 
turn related to the pressure field. On these aspects of 
dissipation, one may consult Anselmet [49]. At any 
point in the flow, the enthalpy field therefore results 
from both the spread in volume caused by turbulence, 
and enthalpy produced locally. This mechanism does 
not appear to introduce any major signs of specificity 
levels of u’ and T’, as was noted in par. 4.2.2; it cannot 
be excluded that this could be due to the fact that the 
instrumentation frequency pass-band was limited to 
340 kHz. It should therefore be asked whether the 
production of entropy spottiness could influence cor- 
relation coefficient -RUT, obtained with or without 
filtering signals u’ and 7”. According to Chu and 
Kovasznay [SO], any addition of local heat-brought 
on in this ease by dissipation and turbulent con- 
vection-increases the temperature and entropy of 
the fluid, causing it to expand. This expansion induces 
pressure waves in the surrounding environment (like 
those waves that cause the volume of a membrane to 
fluctuate). It is tempting to interpret this as one of 
the possible sources of the noise radiation by the 
boundary layer (previously mentioned with respect 
to Figs. 12 and 13) as well as one of the sources of 
fluctuation. 

To summarize, of the three mechanisms that seem 
capable of maintaining correlation coefficient -R,, 

at a value close to 1, two have been shown to be 
related to the properties of large-scale quasi-organized 
structures, and the third to the small-scale internal 
intermittency of turbulence. 

5. CONCLUSIONS 

This work has set out to study the relationship 
between velocity and temperature fields within an 
equilibrium turbulent boundary layer at supersonic 
speeds where a heat flux is present at the wall. 

We have reviewed reasons explaining why the 
classical Reynolds analogy between heat flux and 
momentum transfers cannot be applied to the compress- 
ible boundary layer, and how Young and Morkovin 
were led to develop the basis of the so-called ‘strong 
Reynolds analogy’ specific to high-speed flows. The 
highlights, paradoxes, and limitations of the SRA 
were clarified. Conclusions pointed to the need for a 
new model of the velocity-temperature relationship. 
This led to a proposal for a method of study that 
would give way to new analogy relations. 

Conform to the hypothesis of Morkovin, the 
method first postulated that transfer mechanisms 
depend only slightly on the external Mach number. 
This method primarily takes into account the role of 
large-scale fluctuations that have been illustrated in 
various studies involving coherent structures and the 
bursting phenomenon. A ‘flutter’ representation, due 
to Burnage, was applied to this type of motion. This 
made it possible to confirm the premises of the Prandtl 
theory applied to flows with heat transfers, and led 
to a formula relating the velocity and temperature 
turbulence levels, the local Mach number and the 
mean gradients of velocity, temperature and total 
tem~rature. This formulation would coincide with 
the SRA relations in the unrealistic case of flow on 
an adiabatic wall; it is distinct, however, in that it 
contains a term that takes into account a heat flux at 
the wall, and provides a significant correction to the 
interpretation of experimental results concerning a 
non-heated, quasi-adiabatic wall. The new schematic 
model appears to apply reasonably well to the case 
of a cooled wall, which is not well represented by the 
SRA relations. It would be especially useful to test 
this model against results from detailed experiments 
conducted on a wall heated to high temperatures, but 
this data is as yet unavailable for supersonic flows. 
Examples of application have been given to illustrate 
the possibilities of this method in the field of measure- 
ment, and to demonstrate how it may be used to 
specify the evolution of temperature turbulence under 
the influence of an imposed heat flux at the wall. 

An attempt was then made to discern the effects 
of compressibility on the velocity and temperature 
turbulent field. While the energy effect of pressure 
fluctuations is small, it appears clearly on distributions 
of the velocity-temperature correlation coefficient for 
the longitudinal component of velocity fluctuation. 
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This correlation remains high, sometimes close to 
-0.8, for the major portion of the thickness of the 
layer. The same correlation coefficient for signals 
filtered in narrow frequency bands stays in the same 
manner at high values, over a very wide wave number 
range per momentum thickness. It has been shown 

that these characteristics are specific to high speeds, 
and that they may be attributed in large part to the 
same causes that provoke boundary layer sound wave 
radiation. One of these causes is the presence of eddies 
in the flow that are referred to as ‘bursts’. It seems 
likely that in supersonic flow, compression and re- 
laxation waves develop in the area surrounding these 
bursts. Another possible cause could be the inter- 
mittency of small-scale velocity turbulence, respons- 
ible for creating entropy spottiness inside the flow. 
Both causes, perhaps interrelated, participate in the 
radiation of sound waves called Mach waves. It has 
been emphasized that this schematic representation 
is not to be understood in an absolute sense. It is to 
serve only as a reference in attempting to study, ex- 
perimentally, the problem of the effects of compres- 
sibility on the relationship between velocity and 
temperature. 

The preceding analysis should facilitate the study 
of various subjects related to heat and momentum 
transfer in high-speed turbulent boundary layers 
where a heat source is present at the wall. It has 
provided a certain number of elements that may 
contribute to finding answers to such questions as 
whether or not at supersonic speeds there exists, as 
at low speeds, a narrow spectral analogy between 
the thermal field and the dynamic field, a problem 
recently raised by Fulachier and Antonia [Sl]. This 
analysis may also be applied to the case of free-stream 
flows, and in a more general scope, to flows out of 
equilibrium. 
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LES ANALOGIES DE REYNOLDS ET L’ETUDE EXPERIMENTALE DU TRANSFERT 
DE CHALEUR DANS LA COUCHE LIMITE A VITESSE SUPERSONIQUE 

R&sum&Pour le calcul des ecoulements supersoniques, l’analogie de Reynolds classique doit Btre remplac& 
par une analogie plus specifique. La “strong Reynolds analogy”, due I Young et Morkovin, remplit assez 
bien ce role, mais seulement lorsque la paroi est quasi-adiabatique, c’est-a-dire non &auf&. Une forme 
plus g&r&ale de la SRA est ici proposie, qui tient compte de l’effet d’un flux de chaleur pa&al. Elle est 
bas&e sur des r&hats concemant les mouvements $ grande Bchelle dont la couche limite est le siege. Une 
schtmatisation convenable de ces mouvements conduit ii une relation entre les niveaux de turbulence de 
temperature et de vitesse, et les caracteristiques moyennes de I’ecoulement. Le role de la compressibilitt 

sur le mouvement turbulent est en outre examine. 

REYNOLDS ANALOGIEN UND DIE EXPERIMENTELLE UNTERSUCHUNG DER 
W~RMEUBERT~GUNG IN DER UBER ~BERS~HALLGRENZSCHICHT 

Z~am~nfa~ng-~~r~hallstr~mungen kiinnen nicht untec Beniitzung der klassischen Reynolds-Ana- 
togie berechnet werden; diese mu13 durch eine speziellere Form ersetzt werden. Die von Young und 
Morkovin vorgeschiagene Form der Reynolds-Analogie erfilllt diese Funktion anniihemd, wenn die Wand 
quasi-adiabat ist, nicht aber wenn ein nennenswerter Warmestrom vorhanden ist. Deshalb wird eine 
allgemeinere Darstellung vorgeschlagen. Auf der Grundlage von Ergebnissen, welche die in der Grenz- 
schicht vorhandenen grogrlumigen Bewegungen beriicksichtigen, stellt dieses schematische Model1 eine 
Beziehung zwischen Temperatur, Turbulenzintensitat der Geschwindigkeit und Charakteristik der Haupt- 
stromung her. Gleichzeitig wird die Rolle der Kompressibilitlt bei der turbulenten Bewegung untersucht. 
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AHAJlOWM PEfiHOJIbQCA M 3KCI’IEPMMEHTAJIbHOE M3YrIEHME TEI-IJIOLIEPEHOCA 
B CBEPX3BYKOBOM nOrPAHW4HOM CJIOE 

~HHOT~ulm-~BepX3ByKO~b~e TCYeHMIl HeJlb311 paCC'iHTaTb, npkiMeHRn KJlaCCWieCKyKI aHanOrHMJ PeR- 

HOJlbACa, KOTOpyIO Heo6xonsMo 3aMeHHTb 6onee TOYH0i-i. &TpOm aHaJtOrHR PehiOnbaCaP~, npenno- 

XCeHHaR mHrOM H MOpKOEUHbIM, BbInOJIHIleT 3Ty pOfIb npki6nHmceHHO TOnbKO B cnysae 

Ksa3saxua6aTs9ecKoA cTekiKu,HO He npurontsa npll 3HawTenbHot4 TennoBoM noTorte. Ana npeonone- 

HHR 3TOfi TpynHOCTB npe4JIOxeHa 6onee o6tuaa MOAeJlb C y'IeTOM pOJlH KpyIlHOMNUTa6HblX JiBAxe- 

miii 5 norpaH~q~oM cnoe B 3Tofi cxehsawsecrofi Moaenx nonysesa 3aBHcHMoCTb Mexny Tennor3ol R 

~~HaM~~eCKO~ ~HTeHC~EHOCT~M~ Typ6yJleHTHOC-m H CpWlHSiMH XapaKTep~CT~Ka~~ TeWHHR. %CJeliO- 

BaHa TaK*e pOJtb CX(IIMaeMoCTU B Typ6y~eHT~OM Te’IeHUW. 


